Climatic Factors Driving the Hydrological and Geochemical Responses of Tundra Upland Lakes to Landscape Perturbation

^{1,2}Erika Hille (ehille@uvic.ca), ¹Daniel Peters, ¹Fred Wrona, and ³Steve Kokelj

¹Environment Canada, Water and Climate Impacts Research Centre (W-CIRC),
University of Victoria, BC, V8W 3R4

²Department of Geography, University of Victoria, BC, V8W 3R4

³Water Resources Division, Indian and Northern Affairs Canada, Yellowknife,
NT, X1A 2R3

ISSUE

Climate Change, construction, oil/gas extraction, etc.

Permafrost degradation – active layer thickening and shoreline retrogressive thaw slumping (SRTS)

Potential hydro-bio-geochemical impacts

(Prowse, 2009)

"SLUMPED LAKES"

Exposure of ice-rich sediment

Thawing

Terrain instability

Collapsing shoreline

Stabilization

Burn et al. (1989)

INTEGRATIVE RESEARCH APPROACH

- 1. ArcticNet/IPY Freshwater Bionet investigation "Hydroecological responses of Arctic tundra lakes to climate change and landscape perturbation"
- Permafrost degradation (Kokelj et al.)
- Timing and duration of lake-ice (Prowse et al.)
- Aquatic Biology (Wrona et al.)
 - →Thompson et. al.

2. Other Research

- Stream discharge (Marsh et al.)
- Stream hydro-chemistry (Marsh et al.)
- Catastrophic drainage (Marsh et al.)
- Vegetation (Lantz et al.)
- Snowpack (Kokelj et al.)
- Contaminants (Blais et al.)
- Others

PURPOSE AND OBJECTIVES

Purpose:

To investigate linkages between the hydrological and geochemical processes of the contributing basin and tundra lakes affected by landscape perturbation in the region north-east of Inuvik, NWT, Canada.

Objective 1: Create/update a historical record of temperature and precipitation

- → annual snow pack index
- → spring freshet initiation
- → open water duration
- → rainfall
- **→** snowfall
- **→** evaporation

Objective 2: Assess the importance of landscape-level processes on the geochemistry of "slumped" and "unslumped" lakes.

Primary Study Sites:

Unslumped: Lake 5A

Catchment area = 0.21 km^2

Lake area = 0.03 km^2

Lake depth = 10.9 m

Slumped: Lake 5B

Catchment area = 0.28km²

Lake area = 0.03 km^2

Lake depth = 9m

LAKE 5A

LAKE 5B

Proposed Mackenzie Valley Natural Gas Pipeline ———

- 66 paired lakes (control and affected)
- Chosen by Indian and Northern Affairs Canada (INAC)

Average Daily Air Temperature:

- In 2009 and 2010 (two primary study years) snowmelt was initiated 2-3 weeks early
- Temperature ↑ above 0 in a matter of days
- By May 1st much of the snowpack had ablated
- Rarely has this happened before

Precipitation:

- Snowfall dominates October May
- Rainfall dominates June September

High inter-annual variability in stream flow...

days since the beginning of thaw in 1994 with dates indicated

Spring:

Rapid melt rates

Low vertical infiltration

Overland flow dominates

Summer/Fall:

- Snowpack has mostly ablated
- High vertical infiltration
- Subsurface flow dominates

Winter

- Snowpack forming
- Little to no vertical infiltration
- Low stream flow

Quinton et al. (1999)

- Mean Annual Air Temperature
- High inter-annual variability
- Overall, ↑ by 0.07 °C every year

- May 1st snowpack Precipitation (mm) that fell between October 1st and April 30th
- High inter-annual variability in snowpack depth
- Significant implications for the hydrology of our two primary study lakes

SPRING 0°C ISOTHERM

SPRING FRESHET INITIATION

Mean = 136 (May 15^{th})

Mean = $144 \text{ (May } 29^{\text{th}})$

Bonsal and Prowse (2003)

- Good for analysis of spatial/interannual variability in ice-on and ice-off dates
- More robust methods required for open-water duration

Burn et al. (2006)

• Trail Valley Creek can act as a surrogate for our primary study lakes

PRELIMINARY DATA: LAKE GEOCHEMISTRY

- Observed seasonal variability in "slumped" lake chemistry
- Observed difference between "Slumped" and "Unslumped" lakes – Higher concentrations of SO₄, Ca, Mg, and Na in "Slumped" lakes
- Confirms results of Kokelj et al. (2009)
- Similar seasonal variability observed at "Unslumped" lake – at lower concentrations

PRELIMINARY DATA: Surface Flow Geochemistry

- Similar seasonal trends are observed for landscape flow (e.g., ephemeral drainage channels)
- Agrees with seasonal trends in stream hydrochemistry observed at nearby Trail Valley Creek – Quinton et al. (2006)
- Observed seasonal variability in "slump flow to lake" chemistry
- "Slump flow" has higher concentrations of Mg, Na, SO₄, and Ca

Summary

Strong inter-annual and seasonal variability in temperature controls key hydrological processes

Ice-on and ice-off dates
Spring freshet initiation

- Variability in rainfall and snowfall also have significant implications
 Snowpack
 Spring stream discharge
- Lake and stream water chemistry appears to be typified by the spring freshet
- Shoreline Retrogressive Thaw Slumping (SRTS) is a common feature among lakes in the upland region north-east of Inuvik, NWT
- Permafrost degradation (SRTS) appears to increase the SO₄, Ca, Na, and Mg loading to ephemeral drainage channels increasing the ionic concentration of "slumped" lakes
- † in the concentration of SO₄, Ca, Na, and Mg may affect the ecology of "slumped" lakes

FUTURE DIRECTIONS

- Evaporation
 - Detailed micrometeorological measurements taken for 2006, 2007, 2008, and 2009
 - → Use Priestley-Taylor to modify a simpler method
- Snow Water Equivalence (SWE)
 - → Detailed snow surveys at 5A and 5B for 2006, 2007, 2008, and 2009
 - → Snowpack at "slumped" vs. "non-slumped" lakes
- <u>Inter-annual</u> and <u>seasonal</u> variability in lake geochemistry "slumped" vs. "non-slumped"
 - → Additional water chemistry data for 2007, 2007, 2008, and 2010
- Regional variability in lake geochemistry
 - -> Landscape and lake geochemistry at 19 additional lakes
- Regional variability in soil and permafrost geochemistry
 - -> Soil and Permafrost cores taken along the proposed transect
- Community outreach NSERC Northern Research Internship

THANK YOU!

- Tom Carter
- Donald Ross
- William Hurst
- Klaus Gantner
- Peter Di Cenzo

Affaires indiennes et du Nord Canada Indian and Northern Affairs Canada

Environment Canada Environnement Canada

AURORA RESEARCH INSTITUTE

